ENERGY EFFICIENCY AND GHG EMISSION INTENSITY VALUES FOR LOGISTICS SITES

Webinar – 3 February 2022

Andrea Fossa Greenrouter

Jan-PhilippKerstinJarmerDobersFraunhofer IMLFraunhofer IML

Sara Perotti Politecnico di Milano

German, Italian and Latin American consortium for resource efficient logistics hubs & transport

Agenda webinar 03-02-2022

Moderator: Andrea Fossa

Welcome and introduction of the project GILA	Andrea Fossa		
How to measure sustainability performance at logistics sites	lan Dhilinn Jarmar		
Objective of the GILA market study	Jan-Philipp Jarmer		
GILA market study: approach, data base, challenges	— Kerstin Dobers		
GHG emission results and KPIs			
Energy efficiency measures	Caro Daratti		
GILA's roadmap 2022 and possibilities for future participation	- Sara Perotti		

German, Italian and Latin American consortium for resource efficient logistics hubs & transport

The GILA project is designed to contribute to global efforts in reducing the environmental impact of logistics sites: with view to sustainability in general & GHG emissions in specifically.

The GILA project addresses two main areas of research:

- Best practices & future requirements, services and concepts for sustainable logistics sites within an energy & resource efficient transport chain
- Methodological framework for describing detailed the environmental performance of logistics sites

SPONSORED BY THE

Federal Ministry of Education

and Research

Project duration 07 / 2020 - 07 / 2023

GILA's scope for "sustainable logistics sites"

MEASURING SUSTAINABILITY PERFORMANCE AT LOGISTICS SITES & OBJECTIVE OF GILA MARKET STUDY 2021

Jan-Philipp Jarmer Fraunhofer IML

© maxoidos - fotolia.com

German, Italian and Latin American consortium for resource efficient logistics hubs & transport

Measuring sustainability performance at logistics sites

Focus: GHG emissions of operating logistics sites

kg CO₂e of site (annual carbon footprint)

kg CO₂e per m² logistical area

kg CO₂e per m³ temperature controlled area

kg CO_2e per defined service

kg CO₂e per client

kg CO₂e per throughput (tonne, m³, pallet, parcel, TEU ...)

Greenhouse gas emission accounting of logistics chains

Greenhouse gas emission accounting of logistics chains

ISO 14083 scope

transport (all modes) & transhipment sites

GILA project's focus

all logistics sites: terminals, transhipment sites, distribution/fulfilment centres, warehouses, ...

GILA

© Kadmy, William Wang, th-photo, 4th Life Photography, Gui Young Nian, Marco2811, Udo Kroener, Africa Studio, dinostock, Alfonsodetomas, ake1150 - fotolia.com

Categorizing of logistics hubs with view of relevant activities

Stock-keeping requirement: transhipment, with storage

- Site conditions: ambient, temperature controlled
- Operations: with or without order picking

»Guide for GHG emissions accounting at logistics sites«

ISBN 978-3-8396-1434-1

Site type	Ambient		Temperature controlled/I		
Transhipment site	1.2 kg CO ₂ e/tonne	(4)*	n/a		
Storage + transhipment	5.4 kg CO ₂ e/tonne	(34)*	11.7 kg CO ₂ e/tonne	(15)*	
Maritime container terminal	30.1 kg CO ₂ e/container moved				

Dobers, Ehrler et al. (2019)

GILA

sample size of Fraunhofer IML market study 2015

Extension of the data base (sample sizes, geographical coverage) Average values for further sub-categories (related to activities) Greenhouse gas emission accounting of logistics chains

ISO 14083 scope transport (all modes) & transhipment sites

GILA project's focus all logistics sites: terminals, transhipment sites, distribution/fulfilment centres, warehouses, ...

today's focus

transhipment sites, distribution/fulfilment centres, warehouses, ...

Market study "Energy efficiency and GHG emission intensity values for logistics sites"

Objective

- Identify main influencing parameters on energy efficiency and GHG emissions at sites
- Elaborate average GHG emissions intensity values for sites and a reasonable classification scheme for sites
- Data collection via questionnaire* (May November 2021)
 - Core information to calculate GHG emissions
 - Voluntary approach for more detailed information

"Very little data is available on GHG emissions from the buildings and terminals in which goods are stored, handled and transhipped." Alan McKinnon – Decarbonizing Logistics – 2018

Let's overcome this gap!

Market study "Energy efficiency and GHG emission intensity values for logistics sites"

* All confidential information stays with the chosen contact point of GILA

GILA MARKET STUDY: APPROACH, DATA BASE & RESULTS

Kerstin Dobers Fraunhofer IML

© Kadmy, William Wang, Udo Kroener, th-photo, 4th Life Photography, dinostock, Gui Young Nian, Marco2811, Alfonsodetomas, ake1150, Africa Studio - fotolia.com

GILA? German, Italian and Latin American consortium for resource efficient logistics hubs & transport

GILA

17

GILA

63% of the participating sites are Logistics Service Providers (LSP) and offer their services in multiple sectors

Which data is needed for calculating GHG emissions?

19

Emission intensity values

kg CO_2e / m³ real estate

Average values

kg CO_2e / m^2

kg CO₂e / tonne

Collected data

- Consumption data
 - Electricity & fuels
 - Refrigerants
 - Transport packaging & waste
- Logistics data
 - Logistics units outbound
 - Size & height of real estate
 - Location

GILA

Total annual CF of logistics site

kg CO₂e / a

CF = *consumption* × *ef*

Emission factors (ef)

- Electricity (IEA 2021)⁽¹⁾
 - a. Location based approach (national electricity mix)

Sweden	Italy	Germany	[g CO ₂ e/kWh]
	EU-28		

- Other fuels (EN 16258, propane BAFU 2019)⁽²⁾
- Heating fuels (EcoTransIT: ifeu calculation based on ecoinvent)⁽²⁾
- Refrigerants (IPCC 2013*; own calculations for mixtures)⁽³⁾
- Transport packaging (Defra conversion factors 2021)⁽⁴⁾

What are relevant greenhouse gas (GHG) emission sources at logistics sites?

- **88% of the carbon footprint**⁽¹⁾ of the logistics sites result from **energy use** (electricity, heating, material handling)
- ▶ 4% of the GHG emissions result from leakage of refrigerants (estimated by refills)
- **8%** of the GHG emissions are caused indirectly by the use of transport packaging⁽²⁾

Refrigerants

GILA

Transport packaging

national electricity mix emissions refer to transport packaging from plastics and cardboard

Energy consumption at sites

GILA

Electricity is the main energy source used.

Followed by natural gas used for heating, diesel/biodiesel and district heating

156

What is the electricity used for? Allocation to activity clusters

- 50% of the total electricity consumption of the market study has not been allocated to any activity cluster
- 27% of the sites have allocated their electricity consumption to main activity clusters*

Allocation of energy use to energy clusters

Temperature level

GILA

Site type

- Electricity is the main energy source used
- Further allocation of electricity use is key for identifying efficiency measures

Electricity
Material handling (excl. electricity)
Heating fuels (excl. electricity)

What share do renewable energies have?

- 67% of the total electricity consumed bases on greener energy sources than the national electricity mix
 - 81 sites use electricity that is "greener" than the national mix
- ► 57 sites purchase green certificates
- ► 32 sites generate their own electricity
- Little info was specified, which "green" electricity is used

Use of refrigerants

GILA

159

► 41 sites confirmed the use of refrigerants

- thereof 19 ambient sites

Ammonia (R-717) is the most commonly refilled refrigerant

Share of refilled refrigerant types [kg] regarding

temperature level

Use of transport packaging & waste

Number of sites specifying use of transport packaging

Number of sites specifying waste from transport packaging

GILA

- 25% of the sites specified the use of transport packaging
 - with regard to weight:
 pallets are the dominant material stream used (90%)

plastic and cardboard material equal (5%)

- 35% of the sites specified waste from transport packaging
 - with regard to weight:
 cardboard is the main waste stream (68%)
 wood waste (22%)
 plastic (10%)

Emission intensity values for logistics sites

► ISO 14083:

GILA

kg CO₂e / tonne Median values of the GILA market study 2021 (European sites)

Work in progress!!	Ambient		Chilled		Mixed	
Transhipment	3.78 kg CO ₂ e / t	26	11.14 kg CO ₂ e / t	6	3.82 kg CO ₂ e / t	25
Storage + transhipment	2.96 kg CO ₂ e / t	12	5.21 kg CO ₂ e / t	3	15.56 kg CO ₂ e / t	5
Warehouse	6.11 kg CO ₂ e / t	19	6.39 kg CO ₂ e / t	1	n/a	

Interim conclusion of the market study 2021

GILA

- Approach of the GILA market study* is applicable
 - scope should cover energy consumed, leakage of refrigerants, transport packaging used
 - KPIs feasible (if all relevant data provided)
- Data collection is partly still a challenge
 - electricity: capacity to allocate consumption to activity clusters recommended
- Open tasks for GILA markets study 2022 (balance year 2021)
 - review of survey regarding lessons learnt ightarrow focussed/shorter survey
 - clear differentiation of "not available" & "not specified" \rightarrow better analysis
 - use of online survey planned \rightarrow enhance accessibility of participants
 - extension of geographical scope, participating companies \rightarrow larger data base
 - analysis of emissions and sustainability measures at place \rightarrow recommendations

ENERGY EFFICIENCY MEASURES

Sara Perotti Politecnico di Milano

© Fercam

GILA? German, Italian and Latin American consortium for resource efficient logistics hubs & transport

Energy efficiency measures

23 design variables referred to 6 different areas of intervention

life cycle of a logistics site

resources 8

materials

evitalizatio e, recycling

water & waste

surface sealing

renewable energies

emissions

refrigerants

Layout &

yard logistics

material handling

ouilding shell

technical building

equipment

Energy efficiency measures Current adoption vs. Prospective scenario

- The solutions adopted mainly refer to Lighting, Green building and Utilities
- Considering the prospective scenario for future investments, Materials represent the most promising area, followed by Operational practices and Lighting

GILA%

Energy efficiency measures: «as is» vs. «to be»

- > At present, investments are mainly concentrated on **Lighting** technologies (58%), mostly related to LED lamps
- For the near future, companies are mostly looking at Operational practices (i.e., travel distance optimisation for MH systems, optimal scheduling of MH activities and battery charging) and Materials management

* More than one solution can be in place within the same logistics site

GI

Green Building

- **Thermal insulation** and **loading docks with insulated doors** are the most widespread solutions (56%)
- Innovative solutions such as cool roof and green roof are still scarcely adopted, but are among the priorities for future interventions (26% and 30%, respectively)

Utilities

> Photovoltaic panels for self-consumption and solar panels are particularly widespread (32%)

Priorities for future interventions seem to confirm a marked interest in the implementation of photovoltaic panels (31%), together with smart HVAC systems (29%)

Material Handling & Automation systems

- Current adoption is mainly concentrated on **forklifts**, especially high frequency charging (42%) and energy recovery during braking (29%)
- For the future, growing interest towards hydrogen and hybrid forklifts which, to date, do not appear to be adopted by the companies of the sample

Lighting

- **LED** lighting is by far the most adopted (44%), followed by **sensors for reducing consumption (27%)**
- For the future, an increasing attention also towards more recent solutions such as **solar tubes (30%)**

Materials Management

One of the main levers for companies consists in the improvement of packaging materials used, according to two main strategies: adopting more sustainable materials, and working on processes, for instance by enhancing materials reuse and recycle

Energy efficiency measures Generated impact vs. criticalities related to implementation

GILA

38

GILA'S ROADMAP 2022 AND POSSIBILITIES FOR FUTURE PARTICIPATION

German, Italian and Latin American consortium for resource efficient logistics hubs & transport

GILA market studies

Parallel market study 2021 with focus on terminals

- publish and discuss results (Uni Andes)
- Preparation of next market study 2022
 - review of survey
 - elaboration of different (more specified) surveys focussing site types (e.g. frozen storage, liquid bulk terminals, ...)
 - establish online survey
 - aim at

GILA

- elaborating average KPI values for selected site types
- identifying interdependencies of sustainability measures and carbon footprint results

Interested in participating in GILA market study 2022?

Please contact one of us:

andrea.fossa@greenrouter.com sara.perotti@polimi.it

kerstin.dobers@iml.fraunhofer.de

g.wilmsmeier@uniandes.edu.co

No matter ...

- how many sites you want to contribute
- which country the site(s) is/are located
- which site type the site(s) can be allocated to
- how experienced you may be regarding carbon accounting

GILA's roadmap 2022

Development of an online platform "Sustainable Logistics Sites"

- Basic information on sustainability measures
- Provision of templates for data collection (market study) and checklists to self-assess status quo of own sites
- **Site visits** to validate drafted templates and identify best practices
- **Working groups** focussing specific topics (e.g. green IT, green yard)
- **Pilot studies** to e.g. identify impact factors on sustainability performance
 - influence of storage time on energy consumption of single shipment
 - allocation approaches (e.g. at client level)

Update of "Guide for GHG emissions accounting at logistics sites"*

- regarding coming ISO 14083

GILA

elaborate examples for easier implementation

ENERGY EFFICIENCY AND GHG EMISSION INTENSITY VALUES FOR LOGISTICS SITES Webinar – 3 February 2022

Thank you for your participation!

Andrea Fossa Greenrouter

Jan-PhilippKerstinJarmerDobersFraunhofer IMLFraunhofer IML

Sara Perotti Politecnico di Milano

German, Italian and Latin American consortium for resource efficient logistics hubs & transport

References

- Dobers, Kerstin; Ehrler, Verena; Davydenko, Igor; Rüdiger, David; Clausen, Uwe (2019): Challenges to Standardizing Emissions Calculation of Logistics Hubs as Basis for Decarbonizing Transport Chains on a Global Scale. In: *Transport Research Record* 2673 (9). DOI: 10.1177/0361198119844252.
- Dobers, Kerstin; Rüdiger, David; Jarmer, Jan-Philipp (2019): Guide for Greenhouse Gas Emissions Accounting for Logistic Sites. Focus on Transhipment Sites, Warehouses and Distribution Centres. Stuttgart: Fraunhofer Verlag. ISBN 978-3-8396-1434-1. Online available: <u>http://publica.fraunhofer.de/documents/N-532019.html</u>
- Greene, Suzanne; Lewis, Alan (2019): Global Logistics Emissions Council Framework for Logistics Emissions Accounting and Reporting. Version 2.0. Hg. v. Smart Freight Centre SFC. Online available: <u>https://www.smartfreightcentre.org/en/how-to-implement-items/what-is-glecframework/58/</u>
- ISO/DIS 14083: Greenhouse gases Quantification and reporting of greenhouse gas emissions arising from transport chain operations. <u>https://www.iso.org/standard/78864.html</u>
- LinkedIn Group of project GILA: <u>https://www.linkedin.com/groups/13969874/</u>

