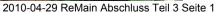
Agenda

Überblick und Einführung

Details und Ergebnisse aus den Arbeitspaketen

Umsetzung in der Instandhaltung und allgemeine Empfehlungen


- I. Optimierung der Instandhaltung
- II. Erkenntnisse aus ReMain

Prozessoptimierung in Instandhaltung und Produktion

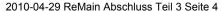
Analyse IST-Prozesse → **Entwicklung Soll-Prozesse** → **Bewertung**

Entwicklung eines Tools zur Entscheidungsunterstützung

Vorgehensweise zur Ermittlung und Bewertung der Prozesse

- 1. Prozessanalyse
- 2. Prozessverbesserung
- 3. Bewertung

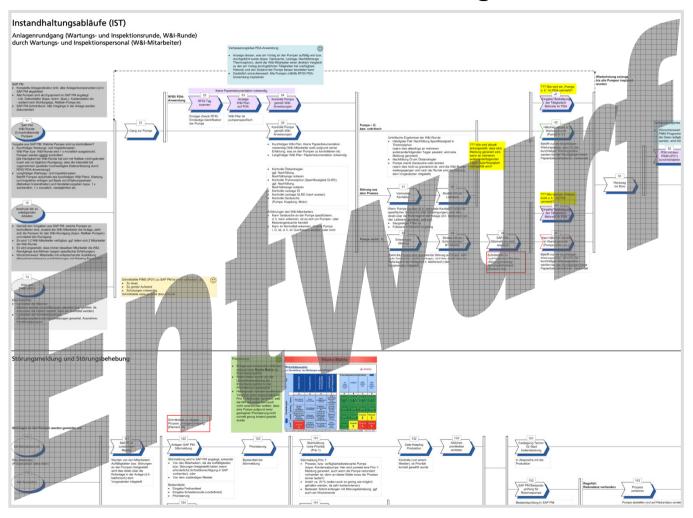
1. Prozessanalyse

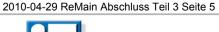


Schritt 1: Aufnahme der IST-Prozessabläufe

Visualisierung im Prozesskettenplan

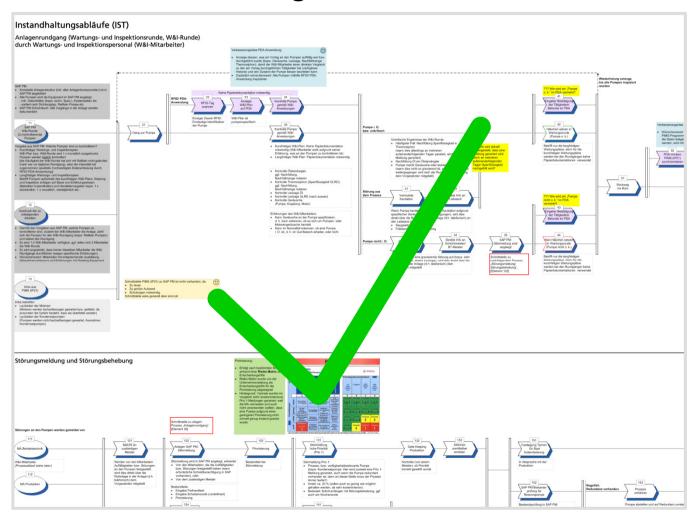
Entwicklung in einem Workshop gemeinsam mit den ausführenden Mitarbeitern.




Prozessgestaltung in Instandhaltung und Produktion 1. Prozessanalyse

Schritt 2: Elektronische Aufbereitung

Die in den Workshops gesammelten Informationen werden mittels geeigneter Software (hier Microsoft™ Visio) in eine bearbeitbare Form überführt.



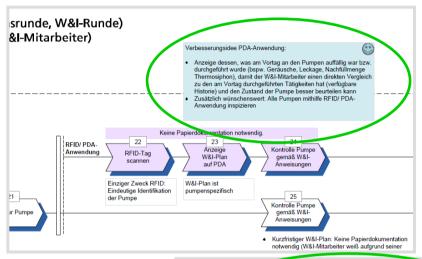
Prozessgestaltung in Instandhaltung und Produktion 1. Prozessanalyse

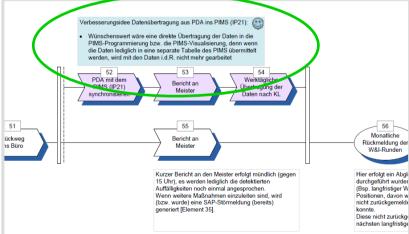
Schritt 3: Verifizierung

Auf Basis der elektronisch aufbereiteten Prozessabläufe kann eine Kontrolle erfolgen, ob alle Prozesse richtig aufgenommen und verstanden worden sind.

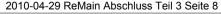
Vorgehensweise zur Ermittlung und Bewertung der Prozesse

- 1. Prozessanalyse
- 2. Prozessverbesserung
- 3. Bewertung



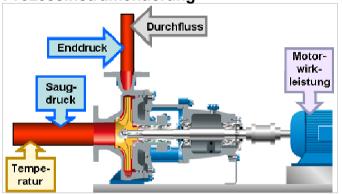


2. Prozessverbesserung



Schritt 4: Erkennen von Verbesserungspotenzialen

Auf Basis der
Prozessketten ist eine
Zuordnung von
Verbesserungspotenzia
Ien zu Prozessen
möglich, die Ursache
und Wirkung
transparent werden
lässt.



2. Prozessverbesserung

Schritt 5.1: Vom IST-Prozess zum SOLL-Prozess

Prozessinstrumentierung

Diff. Wellenleistung /kw

Diff. Förderhöhe /m

Diff. NPSH /m

Absolute
Abweichungen
Relationen

Tit.

Förderhöhe /%

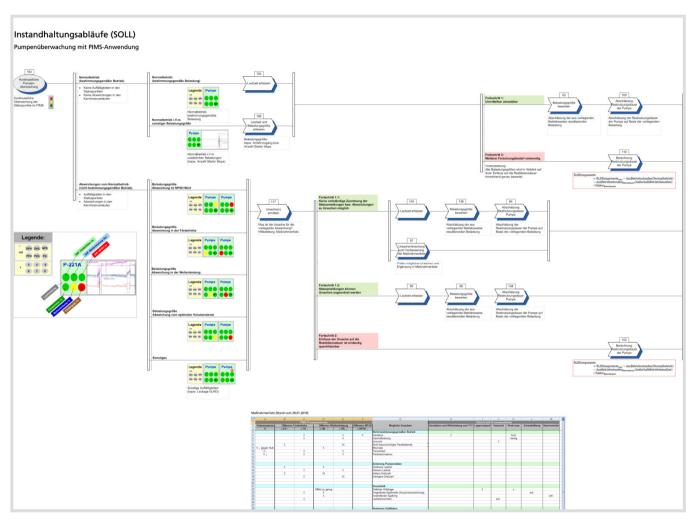
Fördergrad /%

Entwicklung von SOLL-Prozessabläufen unter Berücksichtigung der

Technologieanwendung en.

RFID/ PDA-Anwendung

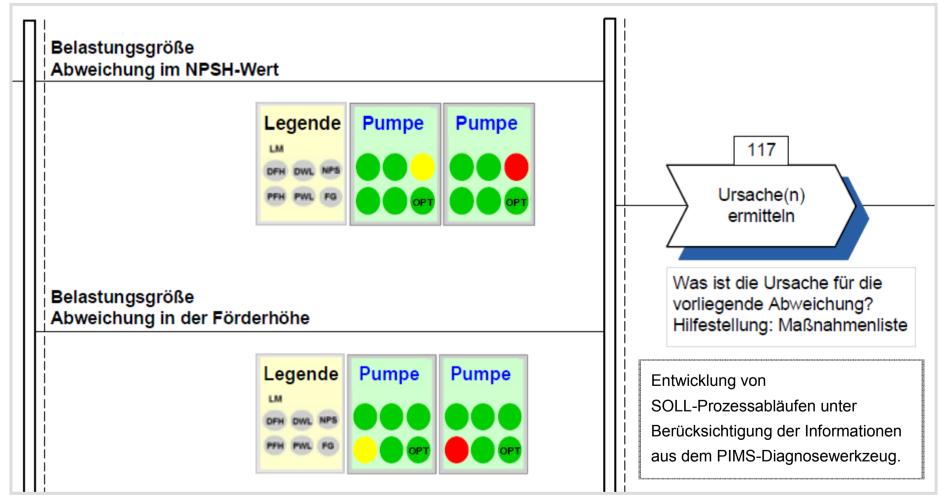
Wellenleistung /%



Prozessgestaltung in Instandhaltung und Produktion 2. Prozessverbesserung

Schritt 5.2: Entwicklung von SOLL-Prozessabläufen

Entwicklung von SOLL-Prozessabläufen unter Berücksichtigung der Informationen aus dem PIMS-Diagnosewerkzeug.



2. Prozessverbesserung

Schritt 5.2: Entwicklung von SOLL-Prozessabläufen (Ausschnitt)

Vorgehensweise zur Ermittlung und Bewertung der Prozesse

- 1. Prozessanalyse
- 2. Prozessverbesserung
- 3. Bewertung

Prozessgestaltung in Instandhaltung und Produktion 3. Bewertung

Excel-Tool für eine Bewertung der Einsparpotenziale bei Anwendung des PIMS-Diagnosewerkzeugs

Szenario 1: Ohne vorbeugende Instandhaltung								
Ausfallkosten ohne vorbeugende Instandhaltung						Total: 320.200 €		
Produktionskosten				Schädigungskosten				
Produktionsausfall	Produktionsänderung	Minderleistung	Pönale	Kundenunzufriedenheit	Personenschäden	Umweltschäden	Folgeschäden	
160.000 €	4.000 €	0€	0€	0€	0€	0€	0€	
Summe: 164.000 €				Summe: 0 €				
Instandsetzungskosten								
Materialkosten (Primär)	Materialkosten (Sekundär)	Werkzeugkosten	Personalkosten	Reinigungskosten	Logistikkosten	Verwaltungskosten	Energiekosten	
120.000 €	8.000 €	600 €	19.200 €	4.000 €	2.000 €	2.000 €	400 €	
Summe: 156.200 €					156.200 €			

Szenario 2: Mit vorbeugender Instandhaltung und Technologieanwendung (PIMS-Programmierung)								
Kosten für vorbeugende Instandhaltung							Total: 128.900 €	
Technolo	ogiekosten	Systempfl	egekosten		Inspektionskosten	Inspektionskosten		
Hardware	Software	Hardware	Software		Personalkosten	Schulungskosten	Material-Restwertkoster	
65.000€	1.000 €	5.000 €	1.250 €		50.400 €	5.000€	1.250 €	
Summe	: 66.000 €	Summe: 6.250 €		50.400 €	50.400 €	5.000€	1.250 €	
			Ausfallkosten mit vorbeug	gender Instandhaltung		Total	: 137.650 €	
Produktionskosten					Schädigungskosten			
Produktionsausfall ★	Produktionsänderung ♦	Minderleistung ♦	Pönale ♦	Kundenunzufriedenheit ♦	Personschäden ♦	Umweltschäden ♦	Folgeschäden ★	
20.000 €	500 €	0€	0€	0€	0€	0 €	0€	
Summe: 20.500 €					Summe: 0 €			
Instandsetzungskosten								
Materialkosten (Primär)	Materialkosten (Sekundär)	Werkzeugkosten	Personalkosten ♦	Reinigungskosten ▼	Logistikkosten	Verwaltungskosten	Energiekosten ♦	
90.000 €	6.000 €	450 €	14.400 €	3.000 €	1.500 €	1.500 €	300 €	
Summe: 117.150 €								

Szenario 1:320.200 €

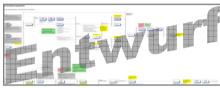
Szenario 2:266.550 €

Gewinn:53.650 €

→ Bewertungshilfe für Investitionen in Meßtechnik und Diagnosesysteme

Vorgehensweise zur Ermittlung und Bewertung der Prozesse

Zusammenfassung


Zusammenfassung

Aufnahme IST-Prozesse Instandhaltung und Schritt 1 Visualisierung in einem Prozesskettenplan

Elektronische Aufbereitung der Schritt 2 Prozessabläufe in MS Visio

Nachbereitung: Verifizierung der Schritt 3 aufgenommenen Prozessabläufe

Prozessverbesserung I: Schritt 4 Erkennen von Verbesserungspotenzialen

Prozessverbesserung II: Schritt 5 Entwicklung von SOLL-Prozessabläufen

Bewertung: Schritt 6 Einsparpotenziale des PIMS-Diagnosewerkzeugs

Agenda

Überblick und Einführung

Details und Ergebnisse aus den Arbeitspaketen

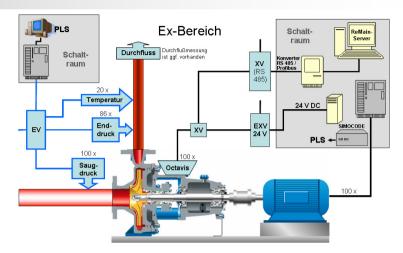
Umsetzung in der Instandhaltung und allgemeine Empfehlungen

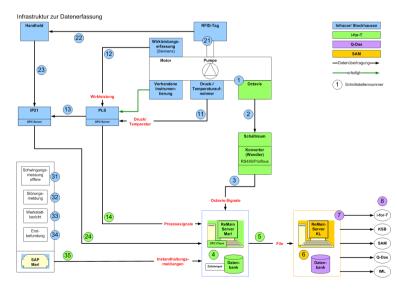
- I. Optimierung der Instandhaltung
- II. Erkenntnisse aus ReMain

Bewertung von Messstellen

Die Instrumentierung der Versuchspumpen ist aufwändig.

Welche Rückschlüsse und Empfehlungen lassen sich für andere Anlagen ziehen?




Verwendete Messgrößen

1. Prozessgrößen und berechnete Größen

- Gemessene Größen:
 - Saugdruck
 - Enddruck
 - Temperatur
 - Durchfluss
 - Motorwirkleistung
- Gerechnete Größen (PIMS):
 - Pumpenlaufzeit
 - Start/Stops
 - Delta NPSH Wert
 - Delta Wirkleistung
 - Delta Förderhöhe
 - Fördergrad
 - Fördermenge aus Wirkleistung
 - Fördermenge aus Wärmebilanz

Verwendete Messgrößen

2. Informationen aus Anlagenbegehung

Präzise Protokollierung von Auffälligkeiten und sichere Zuordnung zur Pumpe

Pumpenspezifischer Wartungsplan aus dem BUSU-SAP

Verwendete Messgrößen

3. Schwingungskennwerte

Aus einem Schwingungssignal können verschiedene Informationen gebildet werden

Diagnosegrössen octavis Lagerschadensfrequenzen (H-FFT)

Unwucht (FFT)

Harmonische (FFT)

Kavitation (H-FFT)

Schaufelpassierfrequenz (H-FFT)

pk max

a_mittel (Betrag)

Abgeleitete Diagnosegrössen (Einwirkdauer)

Einwirkdauer Unwucht Einwirkdauer Harmonische Einwirkdauer Kavitation Einwirkdauer pk_max Einwirkdauer a mittel

Einwirkdauer Lagerschadensfrequenzen Einwirkdauer Schaufelklang (moduliert)

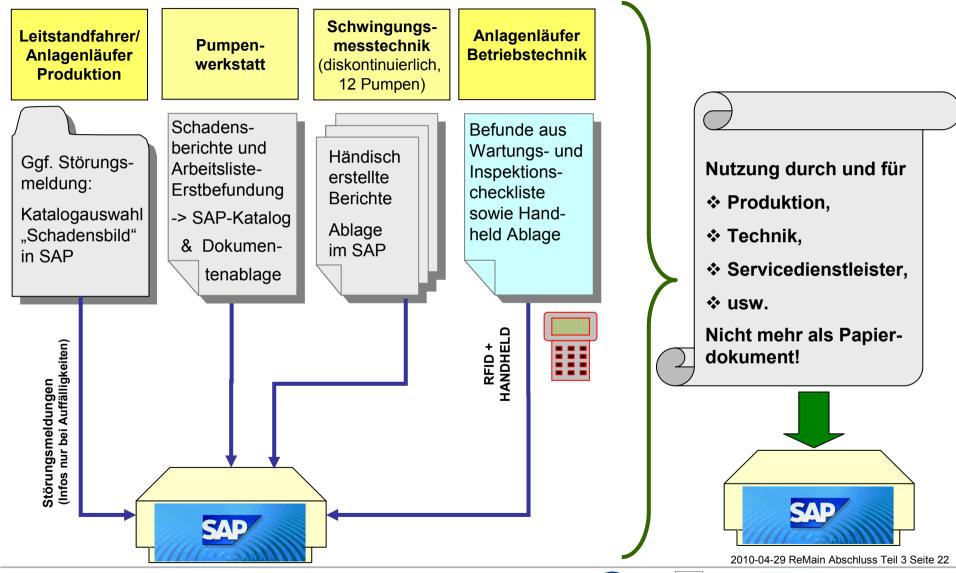
Prognosemöglichkeiten							
Wälzlager	Kupplung	Laufrad	GLRD	Sonstiges			
Х							
	Х			Х			
	X	X					
		X					
		X		Anstreifen			
Х		X		Stösse			
Х	х	X		Х			
		X	Х				
Х	х		Х	х			
Х			Х				
		Х	Х	Х			
		Х	Х	Х			
Х		Х	Х	ļ			
		X	Х				

Bewertung der Messstellen

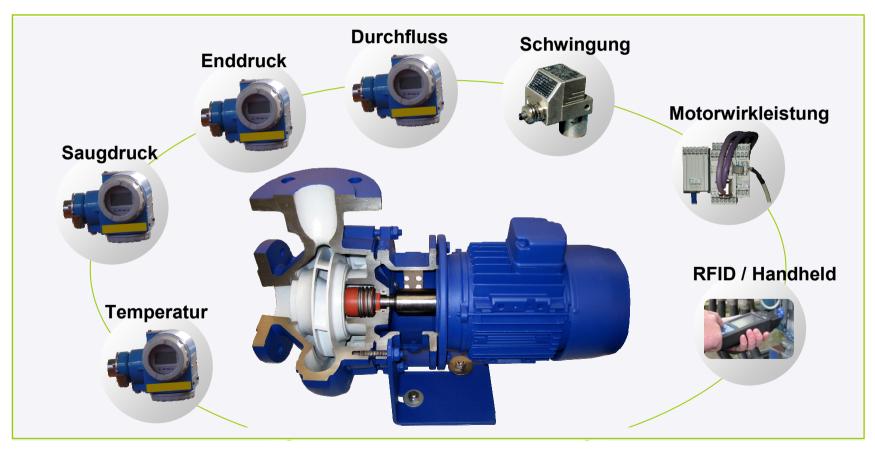
Alle verwendeten Messgrößen liefern relevante Informationen zur Störungsanalyse.

Eine pauschale Empfehlung ist nicht möglich.

Sensoren zur Erkennung von GLRD-Schäden sind noch nicht verfügbar, wären aber wertvolle Informationsgeber.



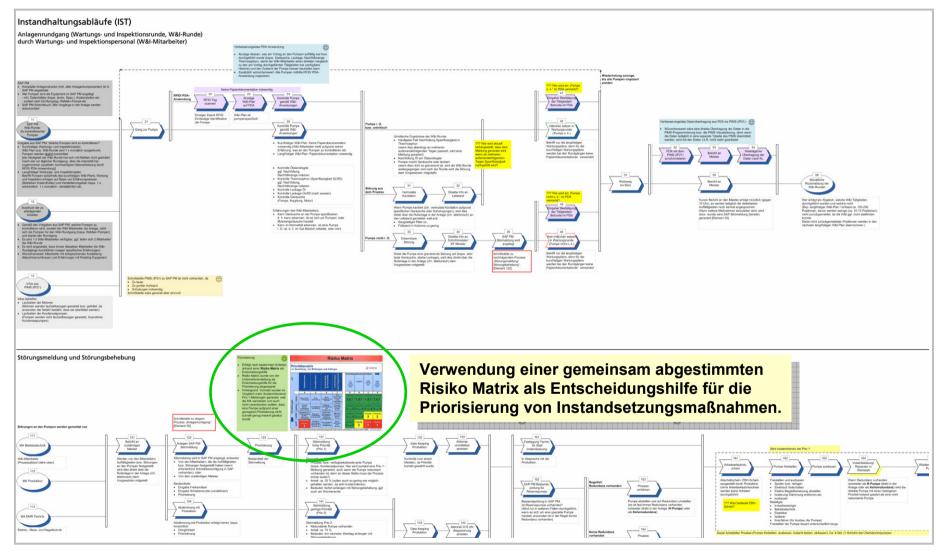
Gemeinsame Datenbasis ermöglicht die kombinierte Analyse der verfügbaren Datenquellen



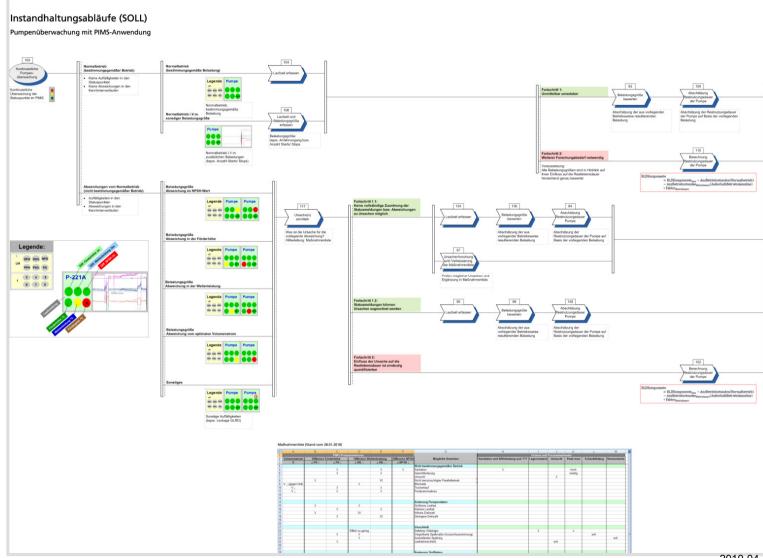
Kombinierte Nutzung von Messstellen für Prozessführung und Instandhaltung

Instrumentierungen zur Regelung der verfahrenstechnischen Prozesse und für das Asset-Management der Komponenten (z. B. Pumpen) nutzen.

- Prozessanalyse Betrieb und Instandhaltung mit allen Beteiligten
 - Produktion
 - Betriebstechnik
 - Dienstleister
- Prozessvisualisierung
- Risikobasierte Instandhaltung um bei Bedarf personenunabhängig die richtige Reaktion sicherzustellen



1. Prozessaufnahme



2. Prozessverbesserung

3. Nutzung der Daten in Echtzeit

100%-Links

Hohe Betriebssicherheit und Schadensprävention werden durch schnelle Reaktion der Anlagenfahrer und Instandhaltung erreicht.

Die Integration von Diagnoseinformationen in das Prozess-Leitsystem (PLS) schafft die Voraussetzung dafür.

PIMS-Diagnosewerkzeug

Pumpe

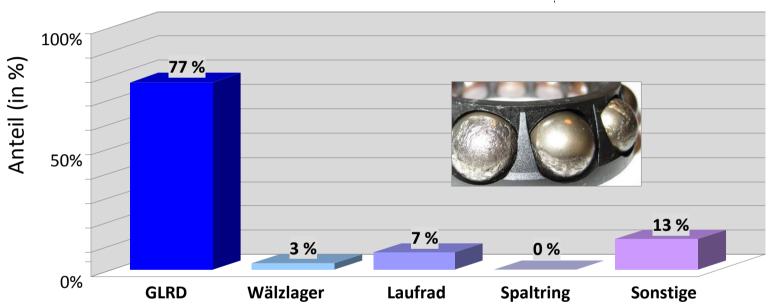
Diff. Förderhöhe /m

Absolute

Relationer

Diff. Wellenleistung /kw

Diff, NPSH /m



Proaktive Wartung: Auswechselung von Bauteilen vor Ende des Abnutzungsvorrates

Ausfallquellen vermeiden durch vorzeitigen Wechsel der Komponenten bei Instandhaltungsmaßnahmen

Ausfallursachen nach Bauteilen

Zum Beispiel ergibt sich die sehr **geringe Anzahl** der **Wälzlägerausfälle** durch den **frühzeitigen Lagerwechsel** bei einer Instandsetzungsmaßnahme an einer Pumpe wenn die **Laufzeit** der **Läger > 1 Jahr** ist.

Da die Kosten für die Läger in Relation zu den Gesamtaufwendungen gering sind.

Zusammenfassung (1)

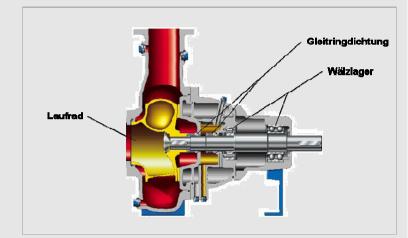
Die deutliche Reduzierung der Ausfälle der Versuchspumpen ist auf die Kombination verschiedener Maßnahmen zurückzuführen:

- Aufbau einer übergreifenden gemeinsamen Datenbasis
- intelligente Nutzung der Messstellen für Prozessführung und Instandhaltung
- Risikobasierte Instandhaltung mit Echtzeitinformation für den Anlagenfahrer
- Proaktive Wartung mit vorzeitigem Austausch aller ausfallkritischen Teile nach definierten Laufzeiten

Zusammenfassung (2)

... aber entscheidender Faktor für die Verlängerung der Laufzeit von Pumpen ist die Sensibilisierung der Mitarbeiter aus Produktion und Technik

- Schulungsfilm
- Schulung im Pumpentechnikum.
- Gemeinsames Risikoverständnis von Produktion und Technik bei der Meldungspriorisierung


Die Vision bleibt: mit der Schätzung der Restlebensdauer Betriebskosten von Pumpen senken

Ansatz: Die Restlebensdauer ergibt sich aus der Differenz zwischen der Auslegung des Herstellers und den Laufzeiten bei bestimmungsgemäßem

und nicht bestimmungsgemäßem Betrieb.

- ⇒ Relevante Bauteile
 - Gleitringdichtung (GLRD)
 - Wälzläger
 - Laufrad

- ightharpoonup = Min (RLD_(GLRD) oder RLD_(Wälzläger) oder RLD_(Laufrad))
- ⇒ RLD_(Bauteil) Basis Anzahl (Starts und Stops) x Faktor m
 - Anzahl (Betriebsstunden Normalbetrieb) x 1
 - Anzahl (Betriebsstunden Kavitationsbetrieb) x Faktor n
 - Anzahl (Betriebsstunden bei Teil- / Überlast) x Faktor p

. . .

Wir sind mit unserem Forschungsprojekt noch nicht am Ziel (Diagnose und Restlaufzeitprognose), aber auf einem guten Wege (Verlängerung der Pumpenlaufzeiten).

Vielen Dank für Ihre Aufmerksamkeit!

